Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/aoc.623

Crystallographic report

The [bis(η^5 -cyclopentadienyl)titanium(IV)-bis(Lmethionine)] dichloride

Radim Bína^{1*}, Ivana Císařová², Martin Pavlišta¹ and Ivan Pavlík¹

¹Research Centre "New Inorganic Compounds and Advanced Materials", University of Pardubice, Nam. Cs. Legii 565, 532 10 Pardubice, Czech Republic

Received 10 January 2004; Accepted 4 February 2004

The structure of ionic complex $[Cp_2Ti(L-Met)_2]^{2+}[Cl^-]_2$ (where $Cp = \eta^5 - C_5H_5$) possessing C_2 symmetry is presented. Discrete cationic units with distorted tetrahedral geometry around the central titanium atom are connected through intermolecular H · · · Cl bonds between ammonium group protons of α-amino acid ligands and chloride anions. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: titanocene dichloride; α -amino acids

COMMENT

In a recent study we were involved in the synthesis and structural characterization of model complexes of the antitumour-active titanocene dichloride (TDC) with essential α -amino acids bearing a sulfur atom in their side chain, i.e. Cys, S-substituted Cys and Met. Herein, we present the structure of one of these compounds. The molecular structure of the TDC-L-Met complex 1 (Fig. 1) shows that α -amino acid ligands are coordinated to the central titanium atom exclusively through the oxygen of the carboxylic group^{1,2} and that no Ti-S interaction is present. Neighbouring cations are connected through intermolecular hydrogen bonds between NH_3^+ -protons of α -amino acid ligands and chloride anions. Carboxyl group structural features and C-O bond lengths and angles compare well with those found in esters.3 Compared with TDC,4 shortening of titanocene core bond lengths and Ti-L bond lengths, as well as changes in appropriate bond angles, was observed regarding the exchange of ligands in the cis-position; average bond distances Ti-Cp(c), Ti-L: complex 1 2.0482, 1.9694 Å; TDC 2.058, 2.364 Å; bond angles Cp1(c)–Ti–Cp2(c), L-Ti-L: complex 1 132.33, 89.10; TDC 130.89, 94.43° (L = Cl or L-OOCCHNH₃CH₂CH₂SCH₃; Cp(c) = ring centre). During the preparation of suitable monocrystals for X-ray

*Correspondence to: Radim Bína, Research Centre "New Inorganic Compounds and Advanced Materials", University of Pardubice, Nam. Cs. Legii 565, 532 10 Pardubice, Czech Republic. E-mail: bina@lachema.cz

structure determination, we found an interesting behaviour with complex 1. Only crystals with the LL combination of isomers (S,S) in the absolute configuration) were grown, although complex 1 contains both optical isomers. Most probably, during the slow process of the single crystal growth, prior formation of those having the LL-combination of isomers (possessing C_2 symmetry of crystal units) was perhaps somewhat preferred to other possibilities (DD and/or DL). A similar feature was also reported for TDC-D,L-4fluorophenylalanine complex,2 where, on the contrary, the DD-combination of isomers was found to be favoured. Thus, perchance, we have met with a similar situation for complex 1.

EXPERIMENTAL

The TDC (2.00 g, 8.0 mmol), D,L-methionine (2.40 g, 16.0 mmol) and distilled water (0.30 ml, 16.7 mmol) were stirred in 5 ml of dry methanol at 20 °C under an argon atmosphere. Light-orange solid, precipitated over 30 min, was filtered off, washed with dry CH₂Cl₂ $(3 \times 5 \text{ ml})$ and dried in vacuum. Suitable crystals were prepared by slow evaporation of solvent from the saturated solution of 1, while holding the solution at 0 °C. Yield: 1.516 g (96.4%), analytically pure product; m.p. >175 °C (dec), light-orange solid. ¹H NMR: 2.18 (m, CH₃, 6H), 2.22 (m, CH₂, 4H) 2.72 (t, SCH₂, 4H), 4.11 (t, CH, 2H) 6.67 (s, Cp, 10H). ¹³C NMR: 18.08 (CH₃), 32.89 (CH₂), 33.47 (SCH₂), 57.14 (CH), 122.99 (Cp), 177.28 (COO); ¹⁴N NMR: -345.48. IR (KBr, cm⁻¹): 3442 vs,b ($\nu_{as}(NH_3)$), 1665 vs ($\nu_{as}(COO)$), 1350 s ($\nu_{s}(COO)$), 1133 w $(\nu(C-C),Cp)$, 827 s-vs $(\nu(C-H),Cp)$. Raman: 1667 $(\nu_{as}(COO))$, 1366 $(\nu_{s}(COO))$, 1132 (9) $(\nu(C-C),Cp)$, 826 $(\nu(C-H),Cp)$, 261 $(a_1-Cp \text{ tilting})$. Intensity data were collected at 150 K on Nonius Kappa CCD area detector diffractometer for a block $0.40 \times 0.25 \times 0.20 \text{ mm}^3$; colour: orange-red. $C_{20}H_{32}N_2O_4S_2Ti \cdot 2(Cl)$, M = 547.40, monoclinic, space group C_2 (no. 5), a = 29.1170(6), b = 7.82300(10), c = 11.6340(5) Å,

²Charles University, Faculty of Natural Sciences, Hlavova 2030, Albertov 6, 128 43 Prague, Czech Republic

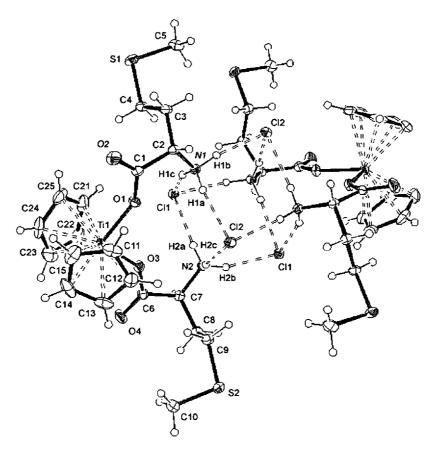


Figure 1. Molecular structure of [Cp₂Ti(L-Met)₂]²+[Cl⁻]₂ — cation · · · anion interaction of two units (ORTEP plot, thermal ellipsoids with 40% probability). Key geometric parameters: Ti−Cp1(c) 2.0480(13) (Cp1 ring slippage: 0.042 Å), Ti−Cp2(c) 2.0484(10) (Cp2 ring slippage: 0.037 Å), Ti−O1 1.9728(13), Ti−O3 1.9660(13), O1−C1 1.292(2), C1−O2 1.211(2), O3−C6 1.289(2), C6−O4 1.218(2) Å; Cp1(c)−Ti−Cp2(c) 132.33(5), O1−Ti−O3 89.10(6), O1−C1−O2 126.06(17), O3−C6−O4 125.85(17)°; H bonds: H1a···Cl2 2.27(3), H1b···Cl2 2.22(3), H1c···Cl1 2.40(3), H2a···Cl1 2.30(2), H2b···Cl1 2.21(2), H2c···Cl2 2.36(2) Å.

 $β = 106.5580(11)^\circ$, V = 2540.13(8) Å 3 , Z = 4, $D_{\rm calc} = 1.431$ g cm $^{-3}$, 5766 unique data ($θ_{\rm max} = 27.47^\circ$), R = 0.033 (all data), ωR = 0.0586 (all data), $ρ_{\rm max} = 0.209$ e $^-$ Å $^{-3}$. Programs used: audit creation method-shelxl 97; platon for Windows v.1.05, 5 ORTEP III for Windows. 6 CCDC deposition number 220526.

Acknowledgements

We wish to thank the Research Centre LN0A0028 and the Grant Agency of Czech Republic (grant no. 203/00/0920) for financial support and Associate Professor Zdeněk Černošek for conducting Raman measurements.

REFERENCES

- 1. Klapötke TM, Köpf H, Tornieport-Oetting IC. *Organometallics* 1994; **13**: 3628.
- 2. Tornieport-Oetting IC. Organometallics 1995; 14: 1632.
- 3. Johnson DA. Some Thermodynamic Aspects of Inorganic Chemistry. Cambridge University Press: Cambridge, UK, 1982.
- Clearfield A, Warner DK, Saldarriaga-Molina CH, Ropal R. Can. J. Chem. 1975; 53: 1622.
- 5. Spek AL. J. Appl. Crystallogr. Sect. A 1990; 46: C34.
- 6. Farrugia LJ. J. Appl. Crystallogr. 1997; 30: 565.